
Scriptroute Scriptwriter’s Guide

Neil Spring

August 2, 2007

2

Contents

1 Introduction 7
1.1 Architecture . 7
1.2 Ruby . 7

2 Reading Code 9
2.1 Traceroute . 9
2.2 SProbe . 13

3 Modifying Code 15
3.1 TCP Traceroute . 15
3.2 Variations on a Ping . 15

4 Writing Code 19
4.1 Interpreter Data Types . 19

4.1.1 Scriptroute :: Ip < Object . 19
4.1.2 Scriptroute :: Icmp < Scriptroute::Ip . 20
4.1.3 Scriptroute :: Udp < Scriptroute::Ip . 22
4.1.4 Scriptroute :: Tcp < Scriptroute:: Ip . 24
4.1.5 Scriptroute :: ProbeResponse < Object . 25
4.1.6 Scriptroute :: TimedPacket < Object . 26
4.1.7 Scriptroute . 26

4.2 Techniques . 26

5 Running Code 27
5.1 Local . 27
5.2 Remote . 27
5.3 require ’srclient’ . 30

5.3.1 Class Methods . 30
5.3.2 Object Methods . 31

6 Policy 33

7 Troubleshooting 35
7.1 Remote Execution . 35

7.1.1 ERROR: You’re already running a measurement . 35
7.1.2 ./srclient.rb:7:in ‘require‘: No such file to load – net/http . 35
7.1.3 ERROR: timed out – scriptroute should never take longer than 60 seconds. 35

7.2 Sending Packets . 36
7.2.1 ERROR: Packet was not actually sent: pcap overloaded? . 36
7.2.2 I asked for 1ms spaced packets and get 10ms spaced clumps! 36
7.2.3 ArgumentError: Invalid address in reserved 0.0.0.0/8 . 36

3

7.2.4 ERROR: packet administratively filtered. 36
7.2.5 ERROR: packet filtered by destination. 36

7.3 Local Experiments . 36
7.3.1 I want to call File.open() within my script. 37
7.3.2 I want to call Kernel.system() within my script. 37
7.3.3 I want to use gdb to debug a problem. 37

7.4 Reporting Bugs . 37

8 Conclusion 39

4

Listings

2.1 Traceroute . 10
3.1 TCP Traceroute for Scriptroute . 16
3.2 Basic ping for Scriptroute . 17
3.3 Ping as a train for Scriptroute . 18
5.1 A script for managing the remote execution of a Scriptroute measurement. 29

5

6

Chapter 1

Introduction

Scriptroute is a distributed platform for flexible, lightweight network measurements. Scriptroute servers host mea-
surement scripts that send network probes, like TTL-limited UDP messages or ICMP timestamp requests, and collect
responses, like ICMP time exceeded or timestamp reply. Hosted measurement scripts can then compute performance
attributes or send additional probes to further uncover network properties.

This manual consists primarily of example Scriptroute scripts. It is intended for an audience unfamiliar with the
Ruby scripting language. Over the course of this manual, you should understand how to write your own measurements,
and how to distribute them across Scriptroute servers for execution.

WARNING The descriptions of some of these examples are out of date. As features have been added to Scriptroute,
the example scripts have been updated, but many of the descriptions here have not. That is, the listings (figures) are
updated directly from the source, while the line-by-line dissection is not. Sorry.

1.1 Architecture
Scriptroute can be broken into three sets of machines: clients, servers, and home. The home servers1 maintain a list
of other servers and destination-specific policy. Clients connect to a home server using DNS or HTTP to discover a
Scriptroute server within a geographic region or autonomous system (a certain provider’s network). Clients can then
submit measurement scripts using HTTP Post to a front-end webserver running on a server. The front-end passes the
measurement to a safe-mode ruby interpreter that runs in a resource-limited chroot sandbox. The interpreter interacts
with the Scriptroute daemon, which decides which and when packets should be sent through a raw socket.

The Scriptroute daemon and interpreter software can also be used locally. That is, a user on the local machine can
run an interpreter exempt from some of the resource and safe-mode limitations imposed by the unauthenticated exe-
cution model of script submission by HTTP. This can be handy for debugging the installation and for developing new
scripts, and also provides a different model for network measurement tools that might be installed on your machine,
reducing the number of tools that need to setuid root.

The Scriptroute server runs as a small webserver that invokes a resource limited interpreter using CGI. Submitting
a script is as easy as posting to a web form, and tools are provided for remotely executing a script with arguments.

1.2 Ruby
Scriptroute measurement scripts are based on Ruby, a general purpose, object oriented scripting language. We chose
Ruby because it is easily embedded, easily sandboxed, and easy to use. For a brief description of Ruby, please
see http://www.ruby-lang.org/en/whats.html. “Programming Ruby” by Thomas and Hunt is a more detailed guide
and reference, and is available online at http://www.rubycentral.com/book/index.html. If you just want to modify an

1Support for multiple “home” servers was added in late 2004.

7

http://www.ruby-lang.org/en/whats.html
http://www.rubycentral.com/book/index.html

Client Front−End Script

Interpreter
Network

Guardian

Scriptroute Server Components

raw sockets

libpcapHTTP
POST

System Management

Server List Destination Filters

Send−train
Internet

CGI

DNS or HTTP Registration

Figure 1.1: System architecture. I usually refer to the “Network Guardian” as “the Scriptroute daemon”; it has the
name “scriptrouted.” DNS policy queries (from an older vesion of this document) have been replaced with a custom
registration protocol that disseminates the entire blacklist rather than query DNS for each destination.

existing measurement, learning Ruby should not be a hassle. If you instead need to write a measurement from scratch,
you’ll probably need to read the first few chapters of Programming Ruby.

In this guide, the listings package highlights and formats the code. Keywords in bold are usually real keywords
(like if , then, etc.). There are very few such keywords in Ruby, so things that are actually class functions in Kernel,
like puts, require, and catch, are also in bold.

8

Chapter 2

Reading Code

In this chapter, we walk though some of the sample scripts. Think of it as an excessively commented script. We
suggest that you first stare at the script for a little while, try to figure out what it does and how it works, then consult
the line-by-line descriptions for what isn’t immediately obvious. Then, if you have time, skim the rest.

2.1 Traceroute
The Ruby language features you should to know for this exercise:

Constants are Capitalized Variables such as ARGV are constants, and cannot be modified. Classes whose names
are capitalized are also immutable, though this is unlikely to surprise anyone.

Blocks There are two types of blocks, those enclosed between do ... end and those enclosed between { ... }.
Don’t worry about the difference.

Data Types Variables are dynamically typed. Unlike Perl, the prefix of the variable (eg., “$” or “@”) defines its
scope, not its type. $foo is a global variable, @foo is an instance member variable, and an undecorated foo is
a local variable to the scope in which it was first assigned. Local variables are sufficient here, so you won’t see
any $’s.

Semicolons Statements are terminated by a new-line, unless an expression is incomplete. The listings package that
formats code in this document may break lines so that they fit – line numbers show the lines in the original
script. Examples:

z = x +
y

z = (x
+

y

)

z = x
+ y

works works won’t work

Line by line,1 the traceroute script code in Figure 2.1 does the following.

1this may be out of sync as the script changes; the figure contains the up-to-date version, the list describes the code

9

! / usr / l o c a l / b in / s r i n t e r p r e t e r

probe = S c r i p t r o u t e : : Udp . new(12)

probe . i p d s t = ARGV[0]

unreach = f a l s e

puts ” Traceroute to #{ARGV[0] } (#{ probe . i p d s t }) ”

catch (: unreachable) do
(1 . .64) . each { | t t l |

(1 . . 3) . each { | rep |
probe . i p t t l = t t l
packets = S c r i p t r o u t e : : send t r a i n ([S t r u c t : : DelayedPacket . new(0 , probe)

])
response = (packets [0] . response) ? packets [0] . response . packet : n i l
i f (response) then

puts ’%d %s %5.3 f ms ’ % [t t l , response . i p s r c , packets [0] . r t t ∗
1000.0]

i f (response . i s a ?(S c r i p t r o u t e : : Icmp)) then
unreach = t rue i f (response . icmp type == S c r i p t r o u t e : : Icmp : :

ICMP UNREACH)
end

else
puts t t l . t o s + ’ ∗ ’

end
$stdout . f l u s h

}
throw : unreachable i f (unreach)

}
end

Listing 2.1: Traceroute for Scriptroute

10

#! ../ srinterpreter

This script is a toy . See rockettrace instead if you’re
planning to execute any sort of network mapping study.

Invoke the interpreter. This should be familiar to those who have written a perl or shell script before, and the
scriptroute interpreter is invoked in the same way. Depending on your installation, this will probably be /usr/
bin/ srinterpreter instead.

probe = Scriptroute :: Udp.new(12)
Create a new UDP packet with 12 bytes of data, and assign the result to probe. The 12 bytes of data mimic
traceroute, it is possible that some routers do not respond to packets of other than 40 bytes. The Udp class is a
member of the Scriptroute module.

probe.ip dst = ARGV[0]
Set the destination of the packet to be the first argument. The script’s arguments (ARGV) are indexed from 0 as
in Perl, unlike C. In scriptroute, hostnames are transparently converted to IP addresses2 and these IP addresses
can be assigned as strings to IP address fields of the packet. That is, the code: p. ip dst = ’127.0.0.1’ is equiv-
alent to the C function inet aton (”127.0.0.1”,&p. ip dst) ; . And the code p. ip dst = ’www.scriptroute.org’
does what you want it to do.

unreach = false
Declare a flag to be set when we see an ICMP Destination Unreachable message of type Port Unreachable. This
will signify that the traceroute is complete. This is declared here so that its scope spans where it is set and where
it is read.

puts ”Traceroute to #{ARGV[0]} (#{probe.ip dst})”
Print a header as if to emulate ordinary traceroute. For output more like that of traceroute (with all rtt’s for a
ttl on a single line), look at rockettrace. The hash/brace syntax tells the interpreter to substitute variables into
double-quoted strings.

catch(:unreachable)do
Start a block. If :unreachable is thrown, we’ll leave the block. This is roughly like in Perl or C.

(1..64) .each { | ttl |
Let the value ttl climb from 1 to 64. While this is essentially the same as a for loop in C, but it should appear
at least a little easier to read.

(1..3) .each { |rep|
We’re going to run a probe at each ttl three times. The syntax 1..3 expresses a range object. The Range class
supports a method each, which takes a block to be invoked for each element in the range.

probe. ip ttl = ttl
Much like before with ip dst , we’re setting a field in the header. This uses the BSD-style names for packet fields,
and transparently handles network / host byte order conversions (though for the ttl field, this is unnecessary).

packets = Scriptroute :: send train ([Struct :: DelayedPacket.new(0,probe)])
This is the heart of the beast. Working from the inside out, we create a new DelayedPacket structure from 0
and the probe. The delay after which the probe can be sent is set to zero, which asks the server to send the
probe as soon as possible. The square brackets create an array, in this case it is an array of just one element.
Scriptroute :: send train sends this array of packets out, then returns an array of probe, response pairs, which
are themselves pairs of timestamp, packet. We assign the result array to the variable packets.

response = (packets[0].response)? packets[0].response.packet : nil
We’re going to make a shortcut: response will point to the response we might have received, or nil if we didn’t
see a response. This is the same conditional assignment syntax that obfuscates C code everywhere.

2there are some exceptions: remote servers may not support name lookup

11

if (response)then
If we get a response, we can print the rtt. ’nil’ is the same as ’false’. BEWARE: nil and false are not the same
as a numeric zero or an empty string, so if (0) will execute the block.

puts ’%d %s %5.3f ms’ % [ttl, response.ip src, packets[0]. rtt ∗ 1000.0]
Print a line much like traceroute, starting with the hop number (ttl), then the source address that sent the response,
followed by the round trip time in milliseconds. puts, as usual, stands for “put string.” It will print a newline
after the string. The \% method of the String class applies sprintf-style formatting. The packets[0]. rtt is
shorthand for: packets[0].response.time − packets[0].probe.time.

if (response.is a?(Scriptroute :: Icmp)) then
It’s pretty unlikely that we’d see a non-ICMP response to a traceroute probe, but it is possible if the other end
responded with UDP. To prevent a type exception when we dig into the response packet’s ICMP fields, this
check is a good idea. is a? is a member function of Object, the base class of everything else. The if/then syntax
is a staple, but note that we’re not using curly braces. If/then/else/elsif are built in to the language, not functions
that take blocks.

unreach = true if (response.icmp type == Scriptroute::Icmp::ICMP UNREACH)
In Perl-like conditional form, set the unreach flag if the response if of type 3 (ICMP UNREACH, or desination
unreachable). There is a constant for this, Scriptroute :: ICMP UNREACH, and the rest of the ICMP constants
defined in ip icmp.h. One could change this to print !H or !A (host or address unreachable) when the response
code (response.icmp code) is anything other than the expected port unreachable.

end
End the if-it’s-an-icmp block.

else
puts ttl . to s + ’ ∗’
end

Traceroute prints either the round trip time or a “*” if no response was received.

$stdout.flush
To get partial responses, especially when executing remotely, output buffering must be overridden. This is the
simplest way to force partial output, not necessarily the most efficient.

}
End the block that repeats three times

throw :unreachable if(unreach)
If this was the last hop we had to trace to, throw the :unreachable exception so that we don’t keep going.

}
End the block that repeats over each ttl value.

end
End the catch block.

And now you understand your (and the) first scriptroute program. This version of traceroute really does the
absolute minimum any traceroute program should, but it serves as an introduction.

This example is written in an imperative style, though Ruby is perhaps better for functional programming. Later
examples will start to introduce such concepts in the context of Scriptroute.

12

2.2 SProbe
SProbe [?] is a packet-pair bandwidth measurement tool that tries to be conservative about when it makes estimates.
The packet stream sent by the original SProbe tool was a train of a configurable number of TCP SYN packets. As the
SYN flag is not required for the tool to function, and is more likely to raise the eyebrow of a port-scan- or syn-flood-
paranoid system administrator, this implementation of SProbe uses only TCP ACKs. SProbe also has a receiver-side
mode that we do not implement here.

The SProbe script is shown in Figures ?? and ??. For this code, we won’t go line-by-line, it might be changed over
time. The salient fieatures are as follows.

The Ruby language features you should know for this exercise include the following Array functions.

map
Apply a block to each element of an array. In this example, we use an array describing the size of packets, then
use map to construct an array of packets.

sort
Sort an array. An optional block specifies the sort order. send train returns an array of packets in the order
responses were received, which is practically undefined, so we sort by a field set in the sent probes.

detect
Walk through an array, evaluating block until it defines to true.

each
Like map, only doesn’t evaluate to a new array.

join
Create a string from an array, if passed an argument, like ”\n”, it will insert the parameter between each of the
elements of the array.

13

14

Chapter 3

Modifying Code

3.1 TCP Traceroute

3.2 Variations on a Ping

15

! / usr / l o c a l / b in / s r i n t e r p r e t e r

probe = S c r i p t r o u t e : : Tcp . new(0)
probe . i p d s t = ARGV[0]
probe . t h d p o r t = 8000
probe . th w in = 1024
t c p r s t = f a l s e

puts ” TCPTraceroute to #{ARGV[0] } (#{ probe . i p d s t }) ”

catch (: t c p r s t) do
(1 . .16) . each { | t t l |

(1 . . 3) . each { | rep |
probe . i p t t l = t t l
packets = S c r i p t r o u t e : : send t r a i n ([S t r u c t : : DelayedPacket . new(0 , probe)

])
i f (packets [0] . response) then

response = packets [0] . response . packet
i f (response . i s a ?(S c r i p t r o u t e : : Icmp)) then

puts ’%d %s %5.3 f ms ’ % [t t l , response . i p s r c ,
(packets [0] . r t t ∗ 1000.0) . t o s]

e l s i f (response . i s a ?(S c r i p t r o u t e : : Tcp)) then
puts ’%d %s %5.3 f ms ’ % [t t l , response . i p s r c ,

(packets [0] . r t t ∗ 1000.0) . t o s]
t c p r s t = t rue

end
else

puts t t l . t o s + ’ ∗ ’
end
$stdout . f l u s h

}
throw : t c p r s t i f (t c p r s t)

}
end

Listing 3.1: TCP Traceroute for Scriptroute

16

! / usr / l o c a l / b in / s r i n t e r p r e t e r

probe = S c r i p t r o u t e : : Icmp . new(0) # anyth ing e lse might not get a response .
probe . i p d s t = ARGV[0]
probe . icmp type = S c r i p t r o u t e : : Icmp : : ICMP ECHO
probe . icmp code = 0
probe . icmp seq = 1

l a s t = Time . now − 1 . 0 ;

(1 . .10) . each { | rep |
probe . icmp seq = rep
delay = 1 − (Time . now− l a s t)
puts ’ delay : ’ + delay . t o s + ’ l a s t : ’ + l a s t . t o s
packets = S c r i p t r o u t e : : send t r a i n ([S t r u c t : : DelayedPacket . new(1 − (Time . now−

l a s t) , probe)])
i f (packets [0] . response) then

response = packets [0] . response . packet
r t t = (response) ? ((packets [0] . response . t ime −

packets [0] . probe . t ime) ∗ 1000.0) : ’∗ ’
i f (response . i s a ?(S c r i p t r o u t e : : Icmp)) then

puts rep . t o s + ’ ’ + response . i p s r c . t o s + ’ %5.3 f ms ’ % r t t
end
l a s t = Time . a t (packets [0] . probe . t ime) ;

else
puts ’ ’ + rep . t o s + ’ to ’ + probe . i p d s t . t o s + ’ t imed out ’

end
$stdout . f l u s h

}

Listing 3.2: Basic ping for Scriptroute

17

! / usr / l o c a l / b in / s r i n t e r p r e t e r

packets =
S c r i p t r o u t e : : send t r a i n ((1 . .10) .map { | rep |

probe = S c r i p t r o u t e : : Icmp . new(16)
probe . i p d s t = ARGV[0]
probe . icmp type = S c r i p t r o u t e : : Icmp : : ICMP ECHO
probe . icmp code = 0
probe . icmp seq = rep
S t r u c t : : DelayedPacket . new((rep >1) ? 1 : 0 , probe

) })

packets . each { | t up l e |
response = tup le . response . packet
r t t = (response) ? ((t up l e . response . t ime − t up l e . probe . t ime) ∗ 1000.0) : ’∗ ’
puts t up l e . response . packet . i p l e n . t o s + ’ bytes from ’ +

tup l e . response . packet . i p s r c +
’ : icmp seq = ’ + tup le . probe . packet . icmp seq . t o s +
’ t t l = ’ + tup le . probe . packet . i p t t l . t o s +
’ t ime = ’ + r t t . t o s + ’ ms ’ ;

}

Listing 3.3: Ping as a train for Scriptroute

18

Chapter 4

Writing Code

This section is intended as a reference manual for Scriptroute-specific classes and constants.

4.1 Interpreter Data Types
Packet classes are comprised of BSD-style header variable names. Each subsection heading is a class, followed by
its parent class – below, Scriptroute :: IP is a child of Object, and inherits all of its methods. In this presentation, a
list of accessor functions is presented. These accessor functions may include “=” meaning that you can also write to
the field when creating a new packet. At right is the default value, as read from a newly instantiated packet. Finally,
there are descriptive notes, which at the very least describe the role of the field, but may justify why access to a field
is read-only.

4.1.1 Scriptroute :: Ip < Object

Scriptroute :: Ip is the base class from which all other packet classes inherit.

Functions

ip v 4
IP Version. IPv6 support will require a different class

ip hl 5
IP Header Length. IP options may eventually be added, but require a compelling use to be worth the effort.

ip tos , ip tos= 0
IP type of service.

ip len 40
IP length field. Set when a packet is instantiated to the length of the packet.

ip id , ip id = 4
IP identifier. Will likely be set randomly by the scriptroute daemon to assist in recognizing ICMP error re-
sponses.

ip off , ip off = 0
IP fragmentation offset. Not sure what to do with this, but likely to be regulated by the scriptroute daemon.

ip ttl , ip ttl = 255
IP time to live.

ip p 17
IP protocol, set when instantiating a derived class.

19

ip sum, ip sum= 0
IP header checksum. Set by the scriptroute daemon or the kernel.

ip src ’0.0.0.0’
Source IP address. Set by the scriptroute daemon.

ip dst , ip dst= ’0.0.0.0’
Destination IP address. You will want to set this.

ip df , ip df= false
(undocumented – send nspring mail; a lack of documentation is not intentional)

to bytes (binary)
(undocumented – send nspring mail; a lack of documentation is not intentional)

to s (binary)
Invokes tcpdump’s packet decoding functions to present a string version of the packet. Note that this is in the
IP packet class, from which other packets are derived. If invoked on a TimedPacket, the time and the packet are
concatenated. If invoked only on the packet, obviously, the timestamp is not present.

4.1.2 Scriptroute :: Icmp < Scriptroute::Ip

Scriptroute :: Icmp consists of methods and constants for writing ICMP packets. On the todo-list is a method for
accessing the encapsulated packet of ICMP error messages.

Functions

ip v 4
IP Version. IPv6 support will require a different class

ip hl 5
IP Header Length. IP options may eventually be added, but require a compelling use to be worth the effort.

ip tos , ip tos= 0
IP type of service.

ip len 60
IP length field. Set when a packet is instantiated to the length of the packet.

ip id , ip id = 3
IP identifier. Will likely be set randomly by the scriptroute daemon to assist in recognizing ICMP error re-
sponses.

ip off , ip off = 0
IP fragmentation offset. Not sure what to do with this, but likely to be regulated by the scriptroute daemon.

ip ttl , ip ttl = 255
IP time to live.

ip p 1
IP protocol, set when instantiating a derived class.

ip sum, ip sum= 0
IP header checksum. Set by the scriptroute daemon or the kernel.

ip src ’0.0.0.0’
Source IP address. Set by the scriptroute daemon.

ip dst , ip dst= ’0.0.0.0’
Destination IP address. You will want to set this.

20

icmp type, icmp type= 255

The ICMP type. You are expected to set this in outgoing probes to one of ICMP ECHO, ICMP TSTAMP,

ICMP IREQ. It is set by default to -1 to remind you.

icmp code, icmp code= 0

This will be set to zero or one of the UNREACH, TIMXCEED codes below in responses.

icmp cksum 0

Set by the scriptroute daemon.

icmp id 0

Used in echo and timestamp protocols for matching replies. This is set by the scriptroute daemon, because this

field identifies the process sending the packet.

icmp seq, icmp seq= 0

Used in echo for matching replies; may be set by the scriptroute daemon to help in matching, but you should

really set it yourself.

icmp nextmtu, icmp nextmtu= 0

Used in Fragmentation Needed messages.

icmp otime, icmp otime= 0

Used in ICMP timestamps.

icmp rtime, icmp rtime= 0

Used in ICMP timestamps.

icmp ttime, icmp ttime= 0

Used in ICMP timestamps.

ip df , ip df= false

(undocumented – send nspring mail; a lack of documentation is not intentional)

to bytes (binary)

(undocumented – send nspring mail; a lack of documentation is not intentional)

to s (binary)

Invokes tcpdump’s packet decoding functions to present a string version of the packet. Note that this is in the

IP packet class, from which other packets are derived. If invoked on a TimedPacket, the time and the packet are

concatenated. If invoked only on the packet, obviously, the timestamp is not present.

21

Constants

Scriptroute :: Icmp::ICMP ECHOREPLY 0

Scriptroute :: Icmp::ICMP REDIRECT 5

Scriptroute :: Icmp::ICMP ECHO 8

Scriptroute :: Icmp::ICMP UNREACH 3

Scriptroute :: Icmp::ICMP SOURCEQUENCH 4

Scriptroute :: Icmp::ICMP TIMXCEED 11

Scriptroute :: Icmp::ICMP PARAMPROB 12

Scriptroute :: Icmp::ICMP TSTAMP 13

Scriptroute :: Icmp::ICMP TSTAMPREPLY 14

Scriptroute :: Icmp::ICMP IREQ 15

Scriptroute :: Icmp::ICMP IREQREPLY 16

Scriptroute :: Icmp::ICMP MASKREQ 17

Scriptroute :: Icmp::ICMP MASKREPLY 18

Scriptroute :: Icmp::ICMP UNREACH NET 0

Scriptroute :: Icmp::ICMP UNREACH HOST 1

Scriptroute :: Icmp::ICMP UNREACH PROTOCOL 2

Scriptroute :: Icmp::ICMP UNREACH PORT 3

Scriptroute :: Icmp::ICMP UNREACH NEEDFRAG 4

Scriptroute :: Icmp::ICMP UNREACH SRCFAIL 5

Scriptroute :: Icmp::ICMP UNREACH NET UNKNOWN 6

Scriptroute :: Icmp::ICMP UNREACH HOST UNKNOWN 7

Scriptroute :: Icmp::ICMP UNREACH ISOLATED 8

Scriptroute :: Icmp::ICMP UNREACH NET PROHIB 9

Scriptroute :: Icmp::ICMP UNREACH HOST PROHIB 10

Scriptroute :: Icmp::ICMP UNREACH TOSNET 11

Scriptroute :: Icmp::ICMP UNREACH TOSHOST 12

Scriptroute :: Icmp::ICMP UNREACH FILTER PROHIB 13

Scriptroute :: Icmp::ICMP UNREACH HOST PRECEDENCE 14

Scriptroute :: Icmp::ICMP UNREACH PRECEDENCE CUTOFF 15

Scriptroute :: Icmp::ICMP TIMXCEED INTRANS 0

Scriptroute :: Icmp::ICMP TIMXCEED REASS 1

4.1.3 Scriptroute :: Udp < Scriptroute::Ip

Methods to access UDP packet header fields.

22

Functions

ip v 4
IP Version. IPv6 support will require a different class

ip hl 5
IP Header Length. IP options may eventually be added, but require a compelling use to be worth the effort.

ip tos , ip tos= 0
IP type of service.

ip len 40
IP length field. Set when a packet is instantiated to the length of the packet.

ip id , ip id = 1
IP identifier. Will likely be set randomly by the scriptroute daemon to assist in recognizing ICMP error re-
sponses.

ip off , ip off = 0
IP fragmentation offset. Not sure what to do with this, but likely to be regulated by the scriptroute daemon.

ip ttl , ip ttl = 255
IP time to live.

ip p 17
IP protocol, set when instantiating a derived class.

ip sum, ip sum= 0
IP header checksum. Set by the scriptroute daemon or the kernel.

ip src ’0.0.0.0’
Source IP address. Set by the scriptroute daemon.

ip dst , ip dst= ’0.0.0.0’
Destination IP address. You will want to set this.

uh sport 42411
Set by the scriptroute daemon. The interpreter binds a valid port as it shares code for packet instantiation with
the scriptroute daemon. The valid port assigned by the interpreter is not trusted, however, and a different one
will be used for the outgoing packet.

uh dport, uh dport= 33434
Destination port. Set to a traceroute-like value by default. May be changed, but likely not to a low numbered
port.

uh ulen 20
UDP length. Set when the packet is is intantiated to the length of the user data plus the length of the UDP header
(8). This packet was instantiated with length 12.

uh sum, uh sum= 0
As before, checksums are handled by the scriptroute daemon and kernel

to s (binary)
Invokes tcpdump’s packet decoding functions to present a string version of the packet. Note that this is in the
IP packet class, from which other packets are derived. If invoked on a TimedPacket, the time and the packet are
concatenated. If invoked only on the packet, obviously, the timestamp is not present.

to bytes (binary)
(undocumented – send nspring mail; a lack of documentation is not intentional)

ip df , ip df= false
(undocumented – send nspring mail; a lack of documentation is not intentional)

23

4.1.4 Scriptroute :: Tcp < Scriptroute:: Ip

Methods to access option-free TCP packet header fields.

Functions

ip v 4
IP Version. IPv6 support will require a different class

ip hl 5
IP Header Length. IP options may eventually be added, but require a compelling use to be worth the effort.

ip tos , ip tos= 0
IP type of service.

ip len 52
IP length field. Set when a packet is instantiated to the length of the packet.

ip id , ip id = 2
IP identifier. Will likely be set randomly by the scriptroute daemon to assist in recognizing ICMP error re-
sponses.

ip off , ip off = 0
IP fragmentation offset. Not sure what to do with this, but likely to be regulated by the scriptroute daemon.

ip ttl , ip ttl = 255
IP time to live.

ip p 6
IP protocol, set when instantiating a derived class.

ip sum, ip sum= 0
IP header checksum. Set by the scriptroute daemon or the kernel.

ip src ’0.0.0.0’
Source IP address. Set by the scriptroute daemon.

ip dst , ip dst= ’0.0.0.0’
Destination IP address. You will want to set this.

th sport 36492
As for uh sport, set by the scriptroute daemon.

th dport , th dport= 33434
As for uh dport. Likely policies will exclude traffic to low numbered ports other than 80.

th seq, th seq= 1732610923
Set the sequence number to something unique if possible.

th ack, th ack= 3324214066
Set the acknowledgement sequence number to something unique if possible.

th flags , th flags = 16
Can be set numerically, or using the flag booleans listed below.

flag fin , flag fin = false
FIN.

flag syn , flag syn= false
SYN. Note that SYN packets are rate limited to a lower level. Do not use SYN packets unless necessary.

flag rst , flag rst = false
RST. Note that RST segments do not solicit a response, so are useless in the current scriptroute implementation.
They will be filtered

24

flag push, flag push= false
PSH. If anyone finds a use for this bit, let me know.

flag ack , flag ack= true
ACK. Set by default as acks are generally useful. They solicit a RST, and nobody seems to care when they re-
ceive em, because they do not create or destroy state.

flag urg , flag urg= false
URG. The urgent pointer is set to zero; this may be useless.

th win, th win= 0
Set the advertised window to something unique if possible.

th sum, th sum= 0
Set by the scriptroute daemon.

ip df , ip df= false
(undocumented – send nspring mail; a lack of documentation is not intentional)

to bytes (binary)
(undocumented – send nspring mail; a lack of documentation is not intentional)

to s (binary)
Invokes tcpdump’s packet decoding functions to present a string version of the packet. Note that this is in the
IP packet class, from which other packets are derived. If invoked on a TimedPacket, the time and the packet are
concatenated. If invoked only on the packet, obviously, the timestamp is not present.

4.1.5 Scriptroute :: ProbeResponse < Object

send train returns an array of objects of this type, which include matched probes and responses with timestamps. The
timestamps are given by libpcap, which means they are the same timestamps you might see when running tcpdump.
On Linux, the kernel timestamps packets as they are received, then hands these timestamped packets to libpcap.1

Functions

probe, probe=
Extract the probe timestamp and packet as a class TimedPacket. Append . time to access the timestamp, or ap-
pend .packet to access the packet contents.

response, response=
Extract the response timestamp and packet. Append . time and .packet as for the probe.

rtt
Calculate the round trip time in seconds of this packet exchange. Returns nil if there was no response. A com-
mon idiom might be (packets[0]. rtt or ”∗”) to get traceroute like behavior. rtt is essentially sugar for:
packets[0].response and (packets[0].response.time − packets[0].probe.time)or nil

rtt s
(undocumented – send nspring mail; a lack of documentation is not intentional)

to s (binary)
Invokes tcpdump’s packet decoding functions to present a string version of the packet. Note that this is in the
IP packet class, from which other packets are derived. If invoked on a TimedPacket, the time and the packet are
concatenated. If invoked only on the packet, obviously, the timestamp is not present.

1Feel free to tell me about the accuracy of such timestamps, and how outgoing packets are stamped by libpcap.

25

4.1.6 Scriptroute :: TimedPacket < Object

Scriptroute :: TimedPacket is the class in which probes and responses are returned to your script by the daemon with
associated timestamps.

Functions

packet
Grab the packet object.

time
Grab the time at which the packet was sent (for probes) or received (for responses). This is stored in the builtin
class Time, but is easily converted to a string or to a floating point value.

to s ’ ’
Invokes tcpdump’s packet decoding functions to present a string version of the packet. Note that this is in the
IP packet class, from which other packets are derived. If invoked on a TimedPacket, the time and the packet are
concatenated. If invoked only on the packet, obviously, the timestamp is not present.

tsc
(undocumented – send nspring mail; a lack of documentation is not intentional)

4.1.7 Scriptroute

Top-level module environment, including version accessors and the send train method

Functions

Scriptroute .DaemonVersion unknown
Read a version structure from the interpreter. The version structure consists of major, minor, and revision fields.
In this case, DaemonVersion involves a query to the scriptroute daemon. If at some point features are intro-
duced, it may be necessary to change behavior based on the interpreter or daemon version.

Scriptroute .DaemonConfig unknown
Read the daemon configuration file as a hash. Boolean, numeric, and string values are given their appropriate
type (not left as strings). For a description of the configuration variables, see the Scriptroute Administrator’s
guide. The intent is to allow your script to sanity check the environment its in and catch any problems before
time is wasted.

Constants

Scriptroute :: InterpreterVersion #<struct Struct::Version major=0, minor=4,
revision=6>

It probably violates some principle of object oriented programming to let the InterpreterVersion be a constant
while DaemonVersion is not. In this case, the version is an attribute of the interpreter software, so it seems fine
for it to be a constant.

4.2 Techniques
This section is a collection of useful techniques discovered over time while using the system.

When running remotely, use $stdout. flush as needed to push intermediate measurement results back to the client.
Alternately, use an ensure block to clean up at the end of a measurement and send back collected results. The

ensure block is even executed if the script runs out of time and is interrupted (sigint) by the web server.

26

Chapter 5

Running Code

In this chapter, we describe how to run your scripts, and how to build distributed measurements. The exciting part of
scriptroute’s remote access protocol is that you could write distributed measurement tools in any language you please
– all you have to be able to do is post to a web form.

5.1 Local
In this section, we describe a how to develop your scripts using the local Scriptroute server. With control over your
own processes, you can do different things: lookup hostnames, avoid process state and resource limits, run under gdb
when something goes wrong, and print extra debugging messages.

The interpreter takes a few command line arguments.

-c Compile only, don’t execute the code. Ruby is dynamically typed, so this is unlikely to catch anything but parse
errors.

-d Skip all resource limits. This makes it easier to run the interpreter under gdb, as gdb will require some file
handles, etc.

-h Print a help message.

-u Unsafe mode. Scriptroute is designed around scripts that can be remotely executed, using Ruby’s safe mode.
That’s great, but sometimes you might want to write a script that also directly manipulates file without redirecting
stdout. Scripts that require unsafe mode can’t be executed remotely via the CGI interface.

-v Print verbose debugging messages.

-V Print the version.

5.2 Remote
In this section, we describe “remotely.rb,” shown in Figure 5.1, which is a script to execute Scriptroute measurements
remotely.

Larger tools might query several remote servers at a time, but will likely retain the same essential procedure:

1. Take a Scriptroute-Ruby measurement script

2. Look-up all hostnames needed

3. URL-encode the script for transmission

4. Connect to a server at port 3355

27

5. Submit it via HTTP POST to srrubycgi

6. Collect and process or print the response.

Line by line, “sr-remotely.rb” in Figure 5.1 does the following.

#!/usr/bin/ruby
Invoke the real Ruby interpreter. This script (and the srclient library it invokes) could be reimplemented in what-
ever language suits you.

require ” srclient ”
Load the srclient library. If you’ve downloaded and installed ruby and scriptroute, srclient will be in your in-
clude path. If not, copy srclient.rb from the scriptroute source directory. To modify Ruby’s load path, use the -I
command line option.

ServerName = ARGV[0]
The first parameter is the hostname of the server.

ScriptFileName =
if (FileTest . exist?(ARGV[1])) then
ARGV[1]

If ScriptFileName, the second command line argument, exists in the local directory, great, but we’ll look for it
in PATH otherwise.

else
path = ENV[’PATH’].split (’:’) .detect { | dir |
FileTest . exist?(dir + ’/’ + ARGV[1])
}

Search through the environment variable PATH where each directory is separated by :’s. The split method in
class String creates an array of strings delimited by the parameter. The detect method of an array returns the
first element (directory) for which the block evaluates to true.

if (path == nil) then
puts ”Script file ’#{ARGV[1]}’ not found”
exit 1;

We did not find the script file anywhere. We could have written if (!path) instead.

end
path + ’/’ + ARGV[1]

We found the script file; the result of this if/then/else block is assigned to ScriptFileName above, much as in
ML.

end

ScriptArgv = ARGV[2..−1]
Assign the rest of the arguments to be the arguments of the script. That is, arguments 2 through last.

puts ”host: #{ServerName}”
puts ” file : #{ScriptFileName}”
puts ”args: #{ScriptArgv.join (’ ’) }”

We print out the arguments here as a header to simplify debugging and building larger analyses. The #{x} syn-
tax converts x to a string and embeds it in the double-quoted string. In Ruby, single-quoted strings receive no
substitution, double quoted strings have their backslashes processed and will evaluate expressions inside # {...} .
ruby-mode will probably be your friend while you gain a feel for this. join is an Array method that concatenates
each of the string elements, the opposite of split .

begin
Start a block that can fail due to timeout.

28

! / usr / b in / ruby

require ” s r c l i e n t ”

ARGV. leng th > 1 or ex i t 1;

ServerName = ARGV[0]

Scr iptFi leName =
i f (F i l eTes t . e x i s t ?(ARGV[1])) then

ARGV[1]

else
path = ENV[’PATH ’] . s p l i t (’ : ’) . de tec t { | d i r |
F i l eTes t . e x i s t ?(d i r + ’ / ’ + ARGV[1])

}
i f (path == n i l) then

puts ” S c r i p t f i l e ’ #{ARGV[1] } ’ not found ”
ex i t 1;

end
path + ’ / ’ + ARGV[1]

end

Scr ip tArgv = ARGV[2 . . −1]

puts ” host : #{ServerName } ”
puts ” f i l e : #{Scr iptFi leName } ”
puts ” args : #{Scr ip tArgv . j o i n (’ ’) } ”

begin
puts S c r i p t r o u t e C l i e n t .

new(ServerName) .
se t reverse dns lookup .
q u e r y f i l e (Scr iptFi leName , Scr ip tArgv .map { | a |

(/ ˆ [A−Za−z][−\w.] + \w$ / . match (a) != n i l) ?
(IPSocket . getaddress (a) or a) : a

}) .
j o i n (” \ n ”)

rescue TimeoutError
puts ”ERROR: t imed out −− s c r i p t r o u t e should never take longer than 60

seconds . ”
ex i t 1; # we f a i l e d .

end

Listing 5.1: A script for managing the remote execution of a Scriptroute measurement.

29

puts ScriptrouteClient .
new(ServerName).

Create a new ScriptrouteClient (from the srclient.rb library) that connects to the server named by ServerName
. Note the trailing dot: we’re not done yet.

set reverse dns lookup.
ScriptrouteClient objects can process the output of the remotely executed script to automatically do reverse-name
lookups. That is, it matches IP addresses and calls gethostbyaddr on each. This method enables this feature on
the newly created client. Again, the trailing dot will take the return value from the set reverse dns lookup
method, (which in the method is ”self”, evaluating here to the object).

query file (ScriptFileName, ScriptArgv.map { |a|
(/ˆ[A−Za−z][−\w.]+\w$/.match(a)!= nil)?
(IPSocket.getaddress(a)or a) : a
}) .

If any of the script arguments look like they could be hostnames (start with alpha characters, and consist of let-
ters, numbers, dots and dashes), we try to lookup the hostname using IPSocket.getaddress. If the lookup fails,
pass the text unaltered.

join (”\n”)
The output of query file is an array of output lines. We concatenate them together to be printed, rather than pro-
cess them further. That’s a backslash n, as in C for newlines; Latex sometimes doesn’t preserve the backslash
when formatting.

rescue TimeoutError
query file can throw a TimeoutError if it appears that the query (or connection to the server) has timed out. We’ll
handle this particular error using a rescue statement.

puts ”ERROR: timed out −− scriptroute should never take longer than 60 seconds.”
Scriptroute servers are designed around kicking out remotely executed scripts after about 30 seconds. Therefore,
if we’ve had to wait for a response longer than a minute, something has gone wrong.

exit 1; # we failed .
Exit with non-zero status to indicate an error.

end
End the error handling block.

5.3 require ’srclient’
A little utility library is included. After gaining some experience using Scriptroute, srclient.rb was written to refactor
common code to a central module. It is installed in Ruby’s path, if you’re able to install Scriptroute. Otherwise, copy
srclient.rb to your working directory.

5.3.1 Class Methods
ScriptrouteClient . serverlist

Returns an array of all public Scriptroute servers listed at www.scriptroute.org:3967. This list is cached to avoid
having to ask the server again within the same process. This list is probably not as useful as sitelist, below.

ScriptrouteClient . sitelist
Returns an array of public Scriptroute servers listed at www.scriptroute.org:3967 that are hosted in different /24
prefixes. (A /24 is a unit of address allocation that frequently corresponds to a single site. Servers within a /24
are likely to be redundant and unnecessary.)

ScriptrouteClient .new(server)
Returns a new ScriptrouteClient object, connected to a particular server. This connection may or may not be
persistent (I don’t know and haven’t had occasion to test).

30

5.3.2 Object Methods
set reverse dns lookup

Sets a flag that causes your script’s output to be post-processed to insert hostnames with IP addresses. That is,
when it sees 128.95.2.30, it will replace it with fretless .cs.washington.edu (128.95.2.30).

query script (string)
Sends a script to the server using HTTP POST. A 100-second timeout is used to avoid blocking too long on an
unresponsive server. (so query script may throw a TimeoutError) This function returns an array of lines output
by the script.

query file (filename, arguments)
Sends a script, read from a file, to a remote server, passing arguments as ARGV[0], ARGV[1], etc. The under-
lying mechanism is to define ScriptRemoteArgs to be the arguments passed to query file , then substitute
ScriptRemoteArgs in place of ARGV. The composed script is then passed to query script, meaning that
query file also returns an array of lines output by the script. This function is the heart of sr-remotely.rb, but
can be used to build larger tools.

31

32

Chapter 6

Policy

There has been some confusion about what behaviors are permitted and what behaviors are forbidden, and how to
circumvent any policy restrictions. “Policy” refers to any administrative limit that prevents a measurement script from
doing anything that is otherwise permitted by the implementation. For example, packets are prohibited from being
sent to the local subnet in the default policy, but the implementation doesn’t care what the destination is.

It is confusing because there are two convolved issues. First, why is behavior X prohibited? (“but I want to send
TCP SYN packets to everyone in the internet!”) Second, which scriptroute component applies the policy?

The decomposition is straightforward. The scriptroute core daemon protects the network. It does not care who you
are, whether you’re running locally (using the local interpreter) or remotely (via the web interface). This is a feature of
Scriptroute’s security model. If it’s okay to do, anyone should be able to do it. If it’s not okay, it should be forbidden.

The interpreter protects the host. It is the environment for remote code execution and must apply resource limits
and safe mode (no filesystem access) restrictions. Now, if you’re running locally, under your own user account, these
restrictions are not necessary. You can disable them by using the “-u” (unsafe mode) and “-d” (no resource limits)1

options. You can disable these options because it’s only your account that is hurt when a script does something unsafe.
Using features enabled by the “-ud” option set will make it impossible to run your script remotely, which is why these
features are disabled by default.

The front end web-server (thttpd) protects the availability of remote service. It will kill off any scripts executed
on behalf of remote users after they’ve taken too long. This is a feature compiled into the webserver and is difficult to
change or disable.

But I’m running as root, shouldn’t I be able to send whatever I want? To do so, you’ll need to change the policy
in scriptrouted.conf to include what you want to do as “safe” behavior. You accept responsibility for any damage this
change in policy causes. That means, if you violate your service agreement with your provider by sending bad traffic,
don’t blame us.

The scriptroute daemon doesn’t automatically give you license to send whatever you want when running as root
philosophically because unsafe traffic is unsafe traffic. The implementation doesn’t support any user-based authenti-
cation, so whether you’re running as an ordinary user, as root, or as nobody, makes no difference to the daemon, and
consequently to the traffic you are permitted to send.

1The “-d” flag is needed when running under the debugger, hence its name.

33

34

Chapter 7

Troubleshooting

7.1 Remote Execution

7.1.1 ERROR: You’re already running a measurement

You, or one of your friends on the same machine, is already running a measurement on a remote Scriptroute server.
Since the number of concurrent experiments is limited, each client is only allowed one at a time.

If you see this error in normal operation, it means some state was left around at the server. It should time out in a
few seconds as your last experiment completes. If not, report it as a bug.

7.1.2 ./srclient.rb:7:in ‘require‘: No such file to load – net/http

Your installation of ruby is incomplete. Ruby is actually looking for net/http.rb (though if it found net/http.so, it would
use that instead, so its error message isn’t specific).

You have the following choices, in decreasing order of preference.

• Get ruby installed by your system administrator. It should be a simple package that is part of your distribution.

• Install ruby yourself, using make install from the ruby directory.

• Install ruby locally, using ./configure --prefix=$HOME/ruby; make INSTALL, then add $HOME/ruby/bin
to your path.

7.1.3 ERROR: timed out – scriptroute should never take longer than 60 seconds.

The Scriptroute server will limit the duration of your script execution. When it does, your script will be “Interrupted”
(sent SIGINT) and a stack trace will result. The client can take advantage of this time limit to set a timeout of,
currently, 100 seconds – if the server takes longer than that to respond, it is not worth waiting any longer, the server
is likely dead. If you see this “timed out” error, it means that the remote server didn’t bother to respond when given
much more than a minute – essentially that the connection timed out, not the experiment.

If this happens when connecting to several servers listed at http://www.scriptroute.org:3967/, it may mean that
your client is behind a firewall, and is unable to connect to port 3355 on the remote server. To test this, run telnet
<server ip> 3355. If you see a connection timed out message, your traffic is probably being filtered. In a future
version of the Scriptroute client, you may be able to set the $HTTP PROXY environment variable so that you can
traverse the firewall using a web proxy.

35

http://www.scriptroute.org:3967/

7.2 Sending Packets

7.2.1 ERROR: Packet was not actually sent: pcap overloaded?

Also, “didn’t see the packet leave: pcap overloaded?”
Every once in a while, libpcap will fail to capture some packets. This happens when the buffer between kernel

and application fills up. This buffer can fill when the rate of traffic is high and the Scriptroute daemon is waiting for a
timeslice.

Scriptroute can observe that something went wrong when it calls sendto() to send your packet but never sees the
outgoing packet using libpcap. In contrast, it can’t tell if a response packet was missed. Consider this error to be a
sign that the machine you’re using is too heavily loaded to be of much use.

send train will return a valid ProbeResponse object, but both probe and response values will be nil . It seemed
likely that any processing of a packet exchange would start with checking if a response was received; these semantics
simplify a script that checks for a response before processing further. However, it means that to estimate loss rate,
you’ll need to check that the probe packet was actually sent. Note that it may have been (and probably was) sent, it’s
just that Pcap missed it.

7.2.2 I asked for 1ms spaced packets and get 10ms spaced clumps!

You’re running on a machine with processor contention: there’s too much other stuff running on the machine. If
scriptroute has to wait for another CPU-bound process to take its timeslice (10ms), it can’t be awake to send your
packet when you want it.

The time when your probe packet was sent is returned by send train, so if spacing is important, check the eventual
spacing and discard unsatisfactory measurements.

Scriptroute could busy-wait for short intervals to try and fight other processes to be awake when you scheduled a
packet. Such a patch would be welcome as a configuration option, but it only postpones and does not actually solve
the problem. Operating systems such as RTLinux have features to schedule fine-grained events that could also be used
to enhance Scriptroute.

7.2.3 ArgumentError: Invalid address in reserved 0.0.0.0/8

Scriptroute is unable to send packets to the network 0.0.0.0/8. This prefix is reserved, and other applications face a
similar problem (just try to telnet 0.0.0.1.)

This exception prevents you from trying to send to an invalid address.

7.2.4 ERROR: packet administratively filtered.

This Scriptroute host is configured not to send your packet. More detail about the specific policy is not provided,
though it is likely that the filtering policy has not been changed from the default.

7.2.5 ERROR: packet filtered by destination.

The destination of your probe has requested not to receive any Scriptroute traffic, or not to receive traffic of the specific
type you wanted to send.

7.3 Local Experiments

If you’re running Scriptrouted on your own machine, you can run a “local” experiment. The site security policy still
applies: you can only send packets of an approved type at an approved rate, however, you can get around the resource
limits as srinterpreter will run as your own user.

36

7.3.1 I want to call File.open() within my script.
To disable Ruby’s safe mode, use srinterpreter -u or change the line at the top of your script to:

#!/usr/bin/srinterpreter -u

While you’re writing a local-only script, you may also want to use the -d option to disable resource limits, some of
which are used to back up Ruby’s safe mode.

7.3.2 I want to call Kernel.system() within my script.
You’ll also have to disable the resource limits:

#!/usr/bin/srinterpreter -ud

A resource limit is used to control the number of processes spawned, which acts as a backup limit to ruby’s safe mode.
This is why there is a resource limit that prevents the use of fork (as used by system).

7.3.3 I want to use gdb to debug a problem.
GDB requires some extra file handles, so srinterpreter must be run in debug mode:

gdb /usr/bin/srinterpreter
run -d /usr/bin/sr-traceroute www.cnn.com

7.4 Reporting Bugs
Send mail to mailto:bugs@scriptroute.org.

Please include the Scriptroute version number, a copy of the script that triggered the bug, relevant lines from
syslog, and anything else you feel would help reproduce the bug or find a way to fix it. However, the above address is
a mailing list, so do not send large attachments.

37

mailto:bugs@scriptroute.org

38

Chapter 8

Conclusion

Wasn’t this fun? I thought so.
More information at http://www.scriptroute.org.
For feedback, contact mailto:nspring@cs.washington.edu.

39

http://www.scriptroute.org
mailto:nspring@cs.washington.edu

	Introduction
	Architecture
	Ruby

	Reading Code
	Traceroute
	SProbe

	Modifying Code
	TCP Traceroute
	Variations on a Ping

	Writing Code
	Interpreter Data Types
	!Scriptroute::Ip < Object!
	!Scriptroute::Icmp < Scriptroute::Ip!
	!Scriptroute::Udp < Scriptroute::Ip!
	!Scriptroute::Tcp < Scriptroute::Ip!
	!Scriptroute::ProbeResponse < Object!
	!Scriptroute::TimedPacket < Object!
	!Scriptroute!

	Techniques

	Running Code
	Local
	Remote
	require 'srclient'
	Class Methods
	Object Methods

	Policy
	Troubleshooting
	Remote Execution
	ERROR: You're already running a measurement
	./srclient.rb:7:in `require`: No such file to load -- net/http
	ERROR: timed out -- scriptroute should never take longer than 60 seconds.

	Sending Packets
	ERROR: Packet was not actually sent: pcap overloaded?
	I asked for 1ms spaced packets and get 10ms spaced clumps!
	ArgumentError: Invalid address in reserved 0.0.0.0/8
	ERROR: packet administratively filtered.
	ERROR: packet filtered by destination.

	Local Experiments
	I want to call File.open() within my script.
	I want to call Kernel.system() within my script.
	I want to use gdb to debug a problem.

	Reporting Bugs

	Conclusion

